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ABSTRACT 

We derive rules for evaluating regge branch cut corrections to 

the triple regge regime of inclusive reactions. Our approach is to 

study classes of hybrid field theory graphs for the six point function 

and set up a constructive procedure for evaluating the contributions 

with discontinuities in the missing mass. We find that all contributions, 

cut and pole, can be given in terms of a single partial wave amplitude 

and our rules are for constructing that. The rules are then cast into 

a form appropriate for a reggeon field theory evaluation of this partial 

wave amplitude, and a renormalization group attack on the problem is 

outlined. This latter work is especially relevant for the case when 

Pomeron exchange is permitted and a nonperturbative evaluation of the 

partial wave amplitude near J. = 1 and ti = 0 is required. 1 
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I. INTRODUCTION 

Analyzing the effects of branch points in partial wave amplitudes 

F(J, t) and their contributions to elastic scattering amplitudes T(s, t) 

has been an on-going project for over a decade. The initial arguments 

of Mandelstam, 
i 2 Gribov, Pomeranchuk, and Ter-Martirosyan, and 

Amati, Stanghellini and Fubini, 
3 

emphasized the necessity of moving 

branch points in J given the presence of moving poles at J = cr(t). In 

retrospect it can be seen that the underlying reason for the branch 

points is unitarity as expressed by rescattering in the s-channel or by 

multiparticle states in the t-channel. 
4 

The study of branch points took on an imperative nature, at least 

for the Pomeron (_P) which has ~(0) = 1, when the generalizations of 

the Finkelstein-Kajantie “disease It5 for E poles having a(t) = 1 + e ‘t 

near t = 0 were shown to lead to the conclusion that the ,P must decouple 

from total cross sections. 6,7,8 A key step in this argument’ involved 

the vanishing of the triple ,P vertex, g,(t ), which is measured in inclusive 

processes in the triple Regge limit. 

In this paper we return to the triple ,P region of inclusive reactions 

using the recent progress 4,9,10 . m the study of branch point contributions 

to elastic processes as a guide to our approach. Here we will construct 

a diagram technique for evaluating multi-2 contributions to the partial 

wave amplitude for the triple Regge limit of the three to three process 
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whose discontinuity in missing mass gives the inclusive reaction. 

This diagram technique will then be employed in formulating a field 

theory for the interacting E’s, and the solution to this field theory will 

be studied in the small J - 1, small t limit using the renormalization 

group for the field theory. An accompanying paper carries out the 

necessary additional arguments needed to transcribe the Reggeon 

field theory result into its consequences for the inclusive cross section 

2 
as a function of s, t, and M , the missing mass. 

It is worth noting that the triplez region of single particle 

inclusive reactions is only one of many important places in which to 

investigate the consequences of a Reggeon field theory. The issue is 

basically this: Reggeon field theories are constructed to automatically 

satisfy the t-channel Reggeon discontinuity formulae. 
4,11 

There is 

no a priori guarantee that they automatically meet the requirements of -- 

unitarity in the s-channel. To look into that question one can analyze 

in detail specific s-channel processes beyond elastic scattering. 

Since the reggeon field theory that describes elastic processes is not 

directly applicable to inelastic reactions, such an analysis typically 

has to begin with the derivation of a reggeon calculus for the specific 

process to be considered. Some of this has been done by the Moscow 

group9 who use an heuristic reggeon diagram technique for multiparticle 

production cross sections and single particle inclusive processes. A 

more complete analysis of the 2 - N production amplitudes has been 
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given by Bartels 
12 and further study of those processes is being 

done by Bartels and Rabinovici. 
13 

These studies show that the reggeon 

calculus for inelastic reactions, although each process requires its own 

set of rules, has in all cases the same structure and is a generalization 

of Gribov’s Reggeon calculus for the 2 - 2 process. 

Our plan in this paper will be to begin in Section II with kinematic 

preliminaries for the triple ,P region. Then we will use the method 

of hybrid Feynman graphs to abstract Reggeon diagram rules for 

the appropriate partial wave amplitude. After casting these rules 

into “covariant” form we discuss the renormalization program for the 

field theory and give the renormalization group equations for the 

theory. The detailed structure of the inclusive cross section requires 

rather much more analysis which we present in the accompanying paper. 

The major result of the present article is a set of Reggeon rules 

for single particle inclusive processes in the triple Regge region. 

We study the three-to-three amplitude T6 of Figure 1 in the limit 

S12=(P*+P2J2+ a > si3 = (Pi’ + P ;J2 - = 
(1) 

s1 = (P, +P2 -Pi)- =, 
s12 si3 --.a,---r 
s1 Si 

with 

s12 
-I 
si3 

s23 = (P3-P;J2> s2 = (P2+Pi- P;12, 

(2) 

s3 = (p3+ p2- p;j2, 6; = tj 
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held fixed. The inclusive process is reached when ti = 0, t2=t3= t, 

and st2 = si3 = s and the inclusive cross section is 

2 do 
S 

dt dM2 
= ii disc 

M2 T6’ (3) 

where the missing mass M2 =s 
1’ See Fig. 2. 

We find that the Reggeon pole and cut contributions to T6 which 

have a missing mass discontinuity can be written in the form 

where -irrJ. 
e I+ 7. e 

-ir(J1-J2-J3) 

‘J. = 
1 +Ti7273 

sinr J. (51 
1 1 ’ ‘Ji-J2-J3 = sinrr(Ji-J2-J3) ’ 

where the 7i are signatures in the Ji channel (Fig. 3). The function 

F(Ji, ti) is real analytic and is to be evaluated from the rules we now 

begin to formulate. 

II. KINEMATIC PRELIMINARIES AND POLE GRAPH 

It is now pretty well understood how cuts in J enter elastic 

amplitudes. The position of such cuts and the discontinuity across 

them can be found on rather general grounds using multiparticle 

t-channel unitarity. 
4 A more pedestrian, yet very powerful, approach 
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was used by Gribov 
14 

in deriving the reggeon diagram technique for 

2 - 2 processes. This technique, which we adopt here, studies the 

high energy, fixed momentum transfer, behavior of hybrid field 

theory graphs in which power behavior is attributed to internal two-to- 

two amplitudes when they carry large subenergies. 
4 

The object of 

study is the signatured partial wave amplitude F(J, t 1 from which the 

elastic amplitude T(s, t 1 is gotten via 

c+im 

T(s,t) = 
I 

$$ sJcJ F(J,t) 

c-im 

with 

-iaJ 

‘J = zinviT 

(6) 

(7) 

and T = ii is the signature. Gribov’s reggeon rules give a constructive 

procedure for evaluating the J-plane cut contributions to the real 

analytic function F(J, t ). These rules can be formulated in a field 

theoretic fashion, and the solution of the problem thus stated by 

means of the renormalization group 9,10 
has provided substantial 

understanding of the detailed behavior of F(J, t) near J=1, t=O for the 

even signatured amplitude involving the ,P. 

The derivation of Reggeon cut rules for inelastic amplitudes is 

less well understood. In principle we would like to have as powerful 

an analytic tool as for the elastic amplitudes. For the multi-Regge 

regime of 2 + N production amplitudes this instrument has been 
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found. 
12 

For the 2 + 3 process, for example, one discovers that in 

the double Regge limit (Fig. 4) one can write pole and cut contributions as 

T2+3 (s, sl’ s2> tf’ t2) = 

F(J,J t t 
1 1 2’ 1’ 2’ t7) + 

SJ2 
J -J 

s1 i 25 
J2 

5 
J1-J2 

F2(Ji,J2,ti,t2,n) , 
I (8) 

where 

e 
-in(Ja-Jb) 

+7 7 
5 J,-Jb = 

a b S 
sin v(Ja- Jb) ,ri = 

siBs2 
(9) 

and the signatured partial wave amplitudes Fi are real analytic. Reggeon 

rules yield the F.. 
1 

Here we see one of the complicating features of inelastic s-channel 

amplitudes. The presence of two partial wave amplitudes in (8) comes 

from the additional variables one requires to discuss the five point 

function, in particular, the azimuthal angle or helicity variable. Two 

terms are also necessary to satisfy the so-called Steinmann relations 

which forbid simultaneous singularities in overlapping invariants. In 

J1 J (8) one may not allow a factor like si s 2 2 , which seems so natural 

from the double Regge picture of Fig. 4, since it has a simultaneous 

Ji 
J -J 

discontinuity in s1 and s2. The combinations s 2 f and 

SJ2 
J1-J2 

s2 

s1 are permitted, and the partial wave decomposition of 

T 
2 -3 contains both possibilities. For more complicated amplitudes, 
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T 244a etc., the number of allowed terms grows rapidly. 

We see here, however, the clue how to begin. We must first 

identify the partial wave amplitudes which are allowed by general 

principles and then find rules for evaluating Reggeon cut contributions 

to them. We will proceed by considering the simplest hybrid graph 

that can contribute to the triple Regge region. This is the triple 

Regge pole graph in Fig. 5. In the study of 2 - 3 amplitudes the structure 

that emerges from the simplest graph has the full content of Eq. (8). 

This will also be the case for us, so we give some detail of the procedure 

in our analysis of Fig. 5b. 

We are interested in studying the six point amplitude T6 for the 

scattering of spinless particles p1 + p2 + p3 -p’ 1 + p ‘2 + p; in the 

triple Regge limit. The contribution to T6 we will analyze in detail 

is in Fig. 5. Each of the 2 - 2 subamplitudes will be required to have 

power behavior in its subenergy for fixed momentum transfers and 

finite off shell masses. We will use the following (over complete) 

set of variables for T6 (Fig. 1). 

S12 = (P,+P212, si3 = tp;+p;j2. s1 = (P, - Q2J2, 

s23 = (p,- p;12, s2 = (p, + Ql12, s3 = (P, - Q,)', (10) 

and 

ti = Q; = (pi -PI 12, i = 1,2,3. 

Since T 
6 

depends only on eight variables, one of these must be 
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redundant. The requirement that T6 be independent of the relative 

orientation angle of the planes between pi and p ;, p2 and p’ , and 
2 

p3 and P; eliminates the extra variable via an unattractive nonlinear 

constraint on the variables in (10). 15,16 

In the triple Regge limit of T6 we require 

while 

s12 s13 
S12’ S13’ S1’ -, - - m 

s1 s1 
> 

- G R, s2, s3, ~2~’ and the t. 
s12 1 

(11) 

(12) 

are held fixed. To analyze Fig. 5b we decompose all vectors into 

their components along vectors pi and p 2 which carry the “large” 

components of momenta and along a remaining space like two vector 

perpendicular to pi. These Sudakovi’ variables allow us to carry 

out the integrations over the projections of loop momenta on the p 
1 

leaving the usual two dimensional transverse dynamics to be specified. 

We define the “large” vectors p li by 

PI m2 P2 > =p1-- 
s12 

and 

m2 
p2 =p2- - s12 PI’ where pt = p < 

2 2 
=m. 

(13) 

(14) 

Clearly pi lies “mostly” along pi, the “beam” direction, and i 2 lies 

mostly along p2. These vectors have the further virtue that to order 

1/S12> -2 p i = 0, which means that in the evaluation of our hybrid graphs 
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to order ?/s~~, we may systematically drop i: , This order of error 

is quite adequate for us. 

Now we wish to decompose all vectors as 

with 

v =Api +Bp +v 
2 1 

VI’ P 1 =v 
I’ p2 

= 0, v2 5 0. 
1 

The kinematic vectors pi, pi and Qi are then 

2 

pi =P1 += 
. 

s12 p2 ’ 

p2 
- +mZ ;*, =P2 

s12 

(m2-s23- 
P3 = 

m2R+s3-t2) _ _ 

si2 
P~+RP~+P~I> 

2 
s2-tl-m _ t 

Q, = 
1 - 

si2 pi+q2p2 +Q*I * 

t2 - 
2 

m +t -s 
- 

Q2=--pi+ 
2 1 

si2 si2 
p2 + Q2, ’ 

and 

s -m’+t -t 2 

Q,= 2 
2 1 - 

Pi + 

si-m ftt-t2 I 

s12 si2 
P2+Q31 * 

(16) 

(171 

(18) 

(19) 

(20) 

(21) 

(22) 

The apparent asymmetry between vectors labeled two and those with 

label three occurs because of our choice of basis vectors pi. This 
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asymmetry will disappear. 

What we uish to do now is label the internal vectors pi by 

pi = AiPi + Bii2 + 1. 
11 ’ 

i = 1,2 

and using 

hd 
d4ii = 2 dAi dBi d2kl (23) 

carry out as much of the dAi dBi integration as possible. Restrictions 

are put on the Ai and Bi by requiring that the energies across the 

reggeons in Fig. 5b be large while insisting at the same time that 

the masses of all particle legs or momentum transfers be small: 

2 
that is 5 m . 

The reggeon energies in our parametrization are: 

Reggeon with ai: (pi- a,)’ = 
2 

(i-Ai)($ 
2 

-Bi)~12 + ii1 , (24) 
12 

2 
Reggeon with cu2: (p2+i2J2 = CL 2 

s12 
+A2)(1 +B2bi2 + 1 2 l> (25) 

2 2 

Reggeon with a3: (p3+ ei- 1,j2 = m -‘23 
-m 

s12 
(R+B1-B2)si 

+(P3+1 1 - 12); . 

The six denominators in this graph of Fig. 5b are 

(26) 

+ic 
2 2 =AiBiSi2+t11-m +icJ (27) 

2 2 
+(Ql-1l)l-m +i.s , (28) 
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2 -m2+ie =A Bs +P 
2 

D3 = Q2 
2 

2 2 12 21-m 
+ie , (29) 

D4 = (Q, - P4 + P2j2-m2+it = 
(s2-m2+t2-ii) 

si2 
-A1+A 

+ (Q, (30) 

D5 = (Pi _ e2)2 _ m2+ i< = (AI-A2)(B1-B2)s12+(~1-~ J2 -m2+iEj 
21 

(31) 

and 
t2 

D6 = (Q,- Q2tm2+ic = (-- 
si2 

- A2)( 

m2+t2- s 
1 

s12 
-B2)si2 + 

+ (Q, - Q2); - 2 m +ie. 

We ask that each reggeon energy be >> m2, 2 and each Di <, m . This 

will give the most important contribution to T6 from Fig. 5b. The Ai 

and Bi are restricted then by 

2 

m<< 
s12 

(33) 

(34) 

I3 I << 1 ) (35) 

2 
m 
- << IB1[ <, 1 . 
si2 

(36) 

Also we require 

pfl <, m2. (37) 
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Using these conditions we may rewrite the reggeon energies 

and the Di as 

Energy for cul: (pl - P i)2 ic -Bisi2 , (38) 

Energy for CY~: (p, + 1 2)2 = A s 
2 12’ (39) 

and 

Energy for 03: (p, + 1 1 - P 2)2 = (Ad-A2)Rs 12 = (Ai-A2)si3, 

while 

2 2 Di = A1Bisi2 + pi I- m + ie 

D2 = AiBisi2 + (Ql-a )2 2 
41 

-m +ie, 

D3 = A2B2s12 + L 2 2 
21 -m +ie, 

si 
D4 = (A2-A&-- - 

12 
Bif *2)Si2 + (Q3-P4+P 2)t-m2+it , 

D5 = (Ai-A2)(B+-B2)st2 + (a,- 1 )2 - m2 
21 +ie , 

D6 = (A2)( 
s1 -+B )s 2 12 + (Q2-l2)f 

2 

si2 
-m +ie. 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

In each of these expressions terms of order s1/si2 have been retained 

while O(m2/si2) has been neglected. 

Each Reggeon exchange carries a signature factor and enters 

T6 as, for reggeon 1 say, 

using (38), where 

5 ai(-Bisi2) 
ai 

, (47) 
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-i ala 1 
e fT 

5 
1 

@I sinrra (48) 
1 

If we call g the internal three particle coupling constant and p the two 

particle-Reggeon coupling, then with the high energy approximations 

made so far we find for T6(Pole) [ Fig. 5bI 

T6(Pole) = P(t,)P(t2)P(t3) 

@lZ) 
al +(y2 

(s~~)~~x dAidBid’1 lldA2dB2d’21 21 
CkBi)aiCA2)@2(A1-A2)a3p3 

D1... D6 
(49 ) 

The p’s under the integrals depend on the invariant masses of the particle 

legs in a complicated and uninteresting manner. 

We wish to cast this integral into a form which explicitly exhibits 

the energy dependence and phase structure . From the form of the D, 
1 

we observe that the B2 integration vanishes unless sgn A2 k sgn (A2-Ai), 

so either 0 5 A 
2 

5 A 1 or A 
1 5 A2 5 0. This allows us to split (49 ) into 

two parts using 

~dA&A2=jdAi;‘dA2+I; dAi/ dA2 . 

0 0 -02 
A1 

Next noting that 

(B4-ie) ai 

j (-Bi) @i +T~(-B~- ie) @1 

= 
ai sin*m 1 

(50 1 

(51) 

and 
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fo2(A2)~25~3iA,-A2)a3 = ~~~~~~ CLy (-A2&X2-Ai) a3 > (52) 
2 3 

we may write T6(Pole) as 

T6(Pole) = (Constant)s12 

0 0 

+ 7273 J J dA dA 
i-i e)Y1+~i(-B1-ie)Qi] 

1 2 sin TT (Y (-“21@2(c12-“i) 

-0) Ai 
1 

We turn our attention next to the Bi integration. The singularities 

in Bi are contained in the zeroes of the Di and in (B1-i E ) @i 
. The poles 

from the Di are all in the lower half Bi plane so we wrap the Bi 

integration around the branch point at B1 = 0 (see Fig. 6). Noting 

An 0 

J 
@I 

dBi (B1 - ie) ai 1 C-B*) 
-0) 

Di.. . D6 = -2 i sinrrcvl J dBl D 
D6 ’ 

(54) 
1 . . . 

-m 

and a similar result for use in the second term of (53), we may write 

cy2 
T6(Pole) = si2 si3 a3 5 6 Ly 

2 @3 
~(s12>si) + 71 ~~ 73 H(si2, -s,$ (55) 

where 

2-k 
-2i (constant )s _ ’ d2P. F d2e Hb 12’s1) = 

12 1 11 ~21 

1 dB21 dBil’, %f 
LLAMAS &A21Y3(-BiIC’ + 

. ..Dq5., 



-16- FERMILAB-Pub-751 29-THY 

To proceed we scale out the s12 dependence of H(s 12’“1) by 

the change of variables A 

H(s i2,sl) = -2i( constant) 

(-?ii Ia1 (A,) 
cu2+a3+1 a2 

x (57) 

This function H has a right-hand cut due to a pinch in the denominators 

D5 and D6 and a left-hand cut from pinching of zeroes in D3 and D4. 

This observation makes it easy to evaluate disc 
si 

H(s s ) on the 12’ i 

right -hand cut 

disc 
s1 

H(s *2’s1) 
i-L 

1 I 

2 P(t,)P(t2)P(t3) 

2i 
(2=J4 

Il d2p 21f dB; j dA;i d~x x ’ 

s1 > 0 

-m 0 0 

x (-B$(A;) 
cu2+cu3 @ -1 

2 X (1-x) 
a3 

6 (D5) > (58) . D4 

WherewehaveletA’ =s A B’ - 
1 Ii’ 1 = B1/sl and the B2 integral has been 

disc 
s1 

Ws 12’“1) 
done using 6(D6). Now we have 

2i for large s1 as 

(s 1 )power times a real, positive function. Thus we learn18 

H(s 12’ 1 s ) + 7i~2~3 H(s~~, -si) 
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= -(sl) 
Q1-a2-n3 5 _ r 

cyi a2-a3 
ai, 02, a3 P(t+t2)P(t3) (59) 

where r 
ai,a2*‘Y3 

is a real integral over the Ai, Bi, Pi I. Now we have 

for T6(Pole) 

a2 (y3 
T6(Pole) = -P(ti)P(t2)P(t3)si2 Ecy si3 CLy x 

2 3 

a1-a2-CU3 
s1 5 r 

0t-a2-CU3 a1>CY2,a3 * 
(60) 

For application to the inclusive process we must replace 5 bd ~ 
a3 c3 

This is the form we have been reaching for. All phases of T 
6 

in the triple Regge region are contained in the signature factors, 
19 

The coefficient (beside the two particle-Reggeon couplings )3) is a real 

triple Reggeon coupling. If we write 

J -J -J 
T6(Pole) = - I dJl..edJ3 J2 J3 

( 2rrij3 
‘12 ‘J2 5 ‘13 J3’1 

1 2 3x 

5 J1-J2-J3 F(Ji>J2>J3.ti>t2>t3), (6i) 

then (60) results from a triple pole in F with factorized residue 

P(t,)P(t2Mt3)rJ J J 

F Pole(J1> J2> J3+t2,t3) = 
1’ 2’ 3 

[ Jp,(ti)l.. . [ J3-e3(t3)] ’ 
(62) 

We might conjecture, and will soon show, that precisely (61) emerges 

from more complicated Reggeon graphs involving branch points as 

well as poles; only F(Ji, ti) will be altered. 
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Two observations will close this section. First, our triple 

Reggeon coupling reduces to the one found by Gribov 14 m his study 

of diagrams for the elastic amplitude when l-cul(tl) = l-a2(t2) + i-e3(t3). 

The quantity 1 - ai plays the role of a conserved “energy” in Reggeon 

field theories4’ 9’ ” and so our r may be interpreted as the “off energy 

shell” triple Reggeon vertex. Such an off shell quantity plays a key role 

in the triple Regge region as we can see by the observation that, in 

general, i-J1 # 1 - J2 + 1 - J3 for the triple partial wave amplitude 

involved in T 
6’ 

This energy “nonconservation” goes away when we join 

pi and p3 to determine the triple Regge contribution to T elastic (Fig. 7). 

Second, in the limit si2 = si3 = s, t = t 
2 3 

= t, tl = 0 this graph 

of Fig. 5b has been evaluated by Mueller and Trueman. 20 
We find quite 

a different result for the phase structure. Our agreement with the general 

partial wave analysis of Ref. 15 and the arguments of Ref. 19 gives us 

some confidence in our answer. 

III. GENERAL ANALYTIC STRUCTURE OF T 
6 

Before we launch into a discussion of more complicated hybrid 

diagrams we pause to make further comment on Eq. (60). This does 

not contain the full structure allowed to T6 in the triple Regge limit. 

In requiring the energy across each Reggeon in our graph to be large 

(>z m‘), we have picked up only those contributions which have a 

nonzero discontinuity in sl. This is sufficient for our present task, 
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but for a fuller understanding it is worthwhile to see what we have 

omitted. 

For the allowed structure of T6 we use some results from the 

literature. 
21 

Start with the genuine triple Regge limit si-m; that 

is, the crossed cosines of angles conjugate to Ji becoming large. In 

Ref. 21 it is argued that when the si -00 , T6CPole) has the form 

T6(Pole) = P(t,)P(t,hW,) 
c 
Sa ELy 5 (Y1-a2-a3 @2 *3 

2 3 cul-@2-@3 
si s12s13v23 + 

+5 5 5 
@ul “2 @3-@1-c2 

12 + 

+E 5 5 c2-al-@3 *i @3 

@1 @3 @2-@l-o3 
s2 ‘12’23 ‘13 ’ 

+e 1 2 +T3e I 
irra3 1, 2 ai + @2 - ) 

s12 Q3X 

q, 
2 1 

+a 
3 

-a ) qcy +c7 -(Y ) 

s13 
2 3 1 

zs2 23 ‘i23’ (63) 

where the V’s are real analytic functions of the ti and nij = s../s.s.. 
‘J 1.l 

These four terms correspond to the four allowed combinations of 

simultaneous discontinuities of T6 as illustrated in Fig. 8. 

The fourth term deserves further comment. The derivation of 

(63) proceeds via a triple partial wave expansion and Sommerfeld-Watson 

transform of T6, leading to 

ai @2 @3 
s1 s2 s3 w hij’ $1. (64) 
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Then the function W is expanded about nif = 0, and the V’s are 

expressed as power series in vii’ regular at nij’ = 0. For the 

physical amplitude the nij are not independent, therefore they cannot 

be taken independently large but one must observe the constraint 

‘ij 
-q. rl . . ik k3 

For example, take vi3 * n12~23. then the fourth term in (63) 

becomes 

a2-al-cu3 iyi *3 
s2 s12 s23 (phase factor) Viz3, (66) 

which has an identical energy dependence to the third term of (63). 

The phase structure is quite different. 

Until now we have been talking about the triple Regge limit 

S.-m. 1 In the mixed limit we take on T6 to get the inclusive cross 

section, 15,21 we still expect a sum of four possible terms having the 

same structure as (63). This is because the singularities in complex 

helicity needed for the mixed limit are tied to the Ji singularities. 15,16 

However, since s2 and s3 remain finite the corresponding angular 

momentum integrals cannot be opened up except in the first term. 

We,then, have 

xg(ff ,,~2,~3,ti)P(tl)P(t2) + 
I 

dJ2dJ35, CJ 5, -cy -J x 
12 3 1 2 

@i J2 J3-al-J2 

’ ‘13 ‘23 ‘3 Fi2(alJ2, J3, ti) + two other terms , 
I 

(67) 
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and no dependence on nz3 appears in the first term. The fourth 

term contributes no discontinuity in sl. 

What we wish to emphasize in all this is that T6 has four 

independent partial wave amplitudes, but only one yields a discontinuity 

in s 1, the missing mass. It is this term that our hybrid graph analysis 

has yielded. The remaining terms differ from this in that they do not 

expose the leading J plane singularity in the t2 or t 
3 

channels. This 

makes it quite plausible that in our analysis of the hybrid diagrams, 

they will be absent. This is consistent with the observations in Ref. 20. 

We close this section with another salient observation about 

(67). The signature factors of the first term show that it has particle 

poles in t2 and t3. It may be viewed as a contribution to the amplitude 

for particle 1 + Reggeon cu2 - particle 1 ’ + Reggeon cy3 (Fig. 9 1. Such 

an amplitude will have many features in common with 2 - 2 particle 

amplitudes. One of these is the Gribov-Pomeranchuk fixed pole at 

nonsense values of J 1, the angular momentum in the tl channel. In 

our amplitude this is in the signature factor 5 and occurs at 
(Y1-a2-a3 

a i 
= cy2 t cz3 -1. The residue of this pole is exactly what appears as 

the triple reggeon vertex in Gribov’s diagram technique for the elastic 

amplitudes. This explains why our r 
(Yi’ a2> a3 

must agree with Gribov’s 

at this nonsense point. It also explains why we took the nonplanar 

hybrid graph in Fig. 5 rather than its simpler planar brother. The latter 

will be missing the needed fixed pole. 
20 
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IV. DIAGRAMS WITH BRANCH POINTS IN J 

We turn our attention now to more elaborate hybrid graphs which 

will give J-plane cuts in the triple Regge partial wave amplitude. Our 

task will be to examine several configurations of graphs and find the 

phase and energy variation exhibited in Eq. (6i). 

Our first hybrid graph is shown in Fig. 10. Our aim is to identify 

various blocks of this graph as known parts from previous analyses; 

for example, r 
Qa, ab> Qc 

from Sec. II and the two Reggeon-two particle 

function N2 from elastic amplitude studies. 4,14 
The expression for the 

present graph is 

P3 5 [(pl-kl-P i)21a’~~2 [(p2+B 2-k2)21u2x D9.. . Di4 @I 

where 

at = (Y[ (Q,+k)'] 3 (69 

cy2 
= (Y[ (Q2+k)‘l , (70 

and 
e3 =a[Q,21 , (71) 

“4 
=&k’l . (72) 
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We use the same set of parameters as before 

k =aii +bp2fkl, 

ki =aiii 1-2 + b.p + k. lIj i =i,2 

and 

Pi =Ai& + B.p 1-2 +Pil’ i = 1,2. 

Next we examine each Di and ask that it be finite; i.e., 

Di “, m2. For the lower vertex in Fig. 10b this means 

ki = aibisi2 tk2 < m2 , 
I1 - 

(p4-k1J2 = (l-a1)bisi2 +kFL “, m2, etc. 

from which we learn 

(73) 

(74) 

(75) 

(76) 

(77) 

Iail 51, la/ z+.kf12< m2. 
(78) 

The same restriction on the upper left vertex shows us 

Ia21 ,< -$-, /a/ <, s$, /b21 <, 1, IbI 51, kil<“m’* t79) 
12 

and together these require 

la/ <_m2/si2, lb1 ,< m2/si2. (8’3) 

All these conditions have an elementary interpretation. Any vector 

with a <, 1, b 5 m2/s12, lies primarily along p1 and its inner product 

with any vector with b <, 1, a <, m2/s 
12’ will be large of order ab s 

12’ 

The subenergies in the lower blob are finite so the vectors there must 

have very small bi since pi enters there and has a = 1. The same goes 
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for the vectors in the upper left: they must have very small ai since 

p2 with b = 1 enters. Since k connects the two blobs both a and b for 

it must be small. It can carry transverse momentum only. 

We also require that each reggeon carry energy >> mL; this 

means 

Reggeon with al: (p,-kl-P 1)2z(1-ai)(-Bi)s12 , (84) 

Reggeon with a2: (p2tP2-k2) 
2 

= A2(1 - b2)si2, (82) 

Reggeon with cr3: (p3tP 1-1 2)2 = (Ai-A2)si3, (83) 

and 

Reggeon with cz4: (ki+k2)’ = aib2si2 . (84) 

In writing this we have incorporated the requirements that the denominators 

D9.. . Di4 
2 

in the central vertex be < m . e These reggeon energies are 

large only if 

m2 -cc [all, Ib21, IBil. iA21 and IA1-A21. 
s12 

(85) 

Now we use these statements about the sizes of the a and b parameters 

to examine the components of Fig. 10b. First look at the lower cross; 

its denominators are 

Di = k: - m2+ie = s a b 2 2 
12 1 1 +kil-m tie , 636) 

2 
D2=(pi-kl)‘-m’tie = (l-ai)(F 

12 
-bt)si2 tklt-m’+ie, (87) 

D3 = (ki+k)‘-m2+ia = ai(bl+b)s12+ (k,+k): -m’+ie, (88) 

and 
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2 

D4 
= (piki-k-Q1)‘-m2+ie = (i-ai)(F ti 

12 
-bi-b-s 

12 )s12 + 

2 2. +(kl+k+Q1)I-m +ie . (89) 

The parameter a does not appear here since it is much smaller 

(O(m2/ s 12)) than aI. So the lower vertex has no dependence on a. 

Similarly the upper cross denominators D5.. . D8 have no dependence 

on b. Furthermore the central triple Reggeon vertex depends on neither 

a nor b and has precisely the form we derived above for r 
cy1.Ly2,@3 

Thus we may collect together the integrations of the central 

vertex as 
2 2 

x P3 
555 s 

IYi+@2 @3 g21s1212 dAldBld Pi PA2dB2d 1 21 

ai @2 a3 ” s13 4(2v) D9...Dt4 

x (-B1)YiA; (Ai-AZ) a3 
q 

=-5 5 5 
cu2 @3 al-(Y2-a3 r 

a2 @3 cu*-@2-cu3 
si2 s13 si ‘yl > Ly2, rr3 ’ 

(90) 

using the analysis of Sec. II. We move the b integration in Eq. (68) 

down to the lower vertex, and note 

daidbld 
2 
k1 i “4 2 

(i-aiJQiai P 

D1.. . D4 
=N d-2 2n 

@l@4 1512[ ’ 
(91) 

where N 
ml. “4 

is the standard two reggeon-two particle amplitude one 

encounters in the elastic amplitude diagram analysis; it is real and 

independent of si2. Doing the same on the upper vertex we find an 
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. . 

N , then we write 
@2’ @4 

N 
af(uq a2@4ral’ @2’ O3 

a +a -1 ry 
2 4 

@ 
s12 3 1 

-lY 
2 

-a 
s13s1 3E 5 (5 5 ). “3 aI-a2-a3 a2 CT4 (92) 

In this combine 5 and 5 via 
cu2 “4 

5 5 = iy 
cu2 “4 

Ccy +* -* , 
a2(Y4 2 4 

(93) 

where 

7 -l--r 

cos 5 (Ly2+a4 ti 
2 4 

- 2 ) 
Y = 

@2ah i-T2 i--r4 j (94) 

sin:(a2+F ) sinz(, 24 t -) 2 
and 

-i r(a2+a4-i) 
e 

+- 5 7274 = 
LY2+(Y4-1 sin TT (a 2 + 0 - 4 1) 

(95) 

Noting that the signatured partial wave amplitude F(Ji, ti) is 

F(Ji,ti) = ~ds~s;‘-~d(++ 

-J2-1 

j-d++ 

-J3-l 

x 

1 
x- 

(2iJ3 
disc disc 

s1 
disc 

s12 s13 T6 ’ (96) 

we have 
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F(Fig. 10b) 4N N 
‘1’4 ‘2’4 rlp2,P3yP I 2 4 

G1 (0 )G 
I2 

(a2Gl (0 )G 
1 

1 i 3 3 l4 
(a ) 

4 [J,-(1 l+P ,-i@,-(1 2+14-1 u(J3-1 3) 

(97) 

in which we have introduced a Mellin transform for each reggeon 

sac, = 
I 

dP 5 2rriP sp Gp (@) (98) 

and 

Gm,bi) = 
1 

(99 1 
1 1 -qlizl ) 

for a reggeon carrying momentum qii. 

This shows that our amplitude can be represented in the form 

advertised, Eq. (4), and that the partial wave amplitude is real analytic. 

Noting that in 197) the Pi integrations lie to the right of the poles in 

G 
‘i 

and the Ji contours in recovering T 
6 

lie to the right of J singularities, 

we write (97) as 

F(Ji, ti) = 

x (2~)~6 ‘(Q 
11 

-kil+k1)(2n)26 '(Q2 l+kI-kzL)2ai 6 (J,-($+m,-1)) x 

x 2rri 6 (J2-(P2+P4 -l))N1~ e N 
2 

1 4 m2~4Ye2r4rE~,e2J3GL~~~l~kl~~~ x 

xGp (a (k2 )) Gp (a (k2 1) GJ (a (Q2 2 2 21 44 1 3 3 31 )I. (100) 
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This, happily numbered formula, contains the following content 

a) each reggeon line carries a two momentum and an angular 

momentum and has a propagator Gp (kt) = (1 -cz(k:))-I. Each r eggeon 

line is directed “upward” in the sense of increasing rapidity. 

b) at each vertex two momentum is conserved. 

c) 1 - P is conserved everywhere except at the triple Reggeon 

vertex. 

d) each loop Pi and kil is integrated over. 

e) the upper left vertex carries a y 
‘2f4 

. At physical J y 
2’ P2P4 

is zero and decouples the cut from physical partial waves. 

To Fig. 10b then we can associate the Reggeon graph of Fig. 11. Note 

the direction of the reggeon lines. 

The vertex N 
ai @2 

is the same as encountered in the reggeon 

graphs for the elastic amplitudes. This identity holds for generalizations 

of the simple cross used in Fig. 10. In particular for the graph of 

Fig. 12 we note that the substitutions 

Np p (kzi Q2;kzl) -P(Q;_)GJ MS; i'h- J (101) 
2 4 2 2’ e 2’ p 4 

N PIP4 (k 11 Q -k ) 11 11 +B(Qf,)G, (4QiJ)rJ p p , (402) 1 
1’ 1 4 

yields the partial wave amplitude. Since reggeon energy, l-1, is 

conserved in the r’s of (101) and (102), these are the good old triple 

reggeon vertices. 
4,14 
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The next observation we make is that Fig. 12 has the same 

structure as the triple pole diagram of Fig. 5b, when the central part 

is considered as a “radiative correction” to the triple reggeon vertex. 

This structure is also found in the form of the partial wave F of Fig. 12: 

P(t1)P(t2)P(t3)GJ (t )G 
1 i J2 

(t2)GJ (t,): (Ji,ti) 
3 

with 

dPidP2dP4 
(2rri)b 

(Z*i) 
3 ~rri16(J2-(P2+P4-1)) 

=J .I 1 rJ .I P ‘1 P GllGP2Gl r 
‘1’14 2’24 24 

3 $;I 
2 

J -(io3) 
3 

It is thus not difficult to find the partial wave amplitude for Fig. 13a 

or Fig. 13b: taking for the central loop the expression (103). we can 

treat these diagrams in the same way as Fig. 11 where we had r instead 

of r . 

Thus our rules allow us already to find the expressions for quite 

a large class of diagrams. As to the question of the energy (1- 1 ) 

nonconserving vertex, there is exactly one in each of these diagrams, 

and we can describe its location in the following way: 

If we enter the reggeon diagram at the bottom andmove upwards 

toward the two upper ends, then at some stage this diagram splits into 

two branches which then lead to the two separated upper ends. In all 

diagrams we have considered so far we can locate a vertex which 
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represents the “last” interaction between the two branches; above 

this vertex there is no further interaction between reggeons of the 

different branches. It is this vertex where reggeon energy is not 

conserved. If we now add to the rules above this general definition 

of the energy nonconserving vertex, then our set of rules describes 

all our diagrams. 

We finally want to note an important feature. If the external 

reggeon energies E. 
1 

= 1 - Ji are chosen so 

Ei = E2 + E3 , (104) 

then total energy is conserved. Since all vertices except for one 

do conserve energy, the overall conservation propagates through the 

diagram, and the energies at the nonconserving vertex are forced onto 

the energy conservation shell. At this point, as we have mentioned the 

energies nonconserving vertex r 
cui; LY2a3 

equals the conserving vertex. 

Consequently, F obeys the same rules as the triple reggeon vertex 

function of the elastic reggeon calculus. 

V. THE DOUBLE CROSS GRAPH 

In the hybrid graphs we have considered till now it has been 

straightforward to identify at which vertex reggeon energy is not 

conserved. The rule of the “last” interaction from the J1 channel 

before the graph splits into the J2 and J3 channels suffices. That 
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there remains a problem is seen by the reggeon graph of Fig. 14a; 

should energy not be conserved at vertex A or vertex B? To answer 

this we return to our hybrid graphs now considering Fig. 14b. 

Parametrize all the internal four vectors as 

ki =aiPi +biP2 1L + k. i =1 3...> 5 (105) 

Pi =AiiI - f Bip2+ P. 
11 

i =1 I..., 4 . (106) 

First we show that this amplitude has the form of three N vertices 

and two r vertices which are connected by two dimensional integrations 

over ki I and k2 I. So we begin by requiring all the denominators in 

the lower and upper right and left vertices to be <, m2. This yields 

! a3 I 5. f* !b31 $mm2/s 12’ k2 ’ 31 Lrn ’ (107) 

I b4 I 21, !a41 <_m2/sizs ktl$m2, (108) 

I b5 1 ” 1, /a51 $.m’/s 12’ kz l<rr m2, (109) 

which is expected since k3 is associated with p1 through no large 

energies and k4 and k5 carry momentum mostly along p2. The 

restrictions on kf and k2 yield 

Ia1 I <5m2/s12, Ibi j <_m2/s12, kfl$m2, 

and 

Ia21 <rrm’/s k2 ’ 
12’ 2.1<rrrn, 

(110) 

(111) 

while b2 remains free at this stage. 



-32- FERMILAB-Pub-75/ 29-THY 

Next we examine all the invariant energies across the reggeons 

2 and require them to be >> m : 

Reggeon with ai: (k3-Ji)2 = a3(-Bi)si2, (112) 

Reggeon with ‘u2: (pi 3 -k -1 3)2 = (l-a3)(-B3)si2, (113) 

Reggeon with a3: (k4+ P 2)2 1 
b4A2S12 ’ (114) 

Reggeon with CY~: (p2-k4+1,)’ = (l-b4)A4si2, (115) 

Reggeon with cu5: (k5+1i-P.2)2 = b5(A1-A2)si2, (116) 

and Reggeon with cz6: (p3-k5+13-E4)’ = CR-b5)(A3 - A4)si2 . (117) 

These are large only if 

and 
la3L lb311 lbgl >>m2/s12 ’ (118) 

Now by using these restrictions we find that the 1ov.e r vertex 

i,s independentof al and a2, but depends on bi. The upper left depends 

on a 1, but not bl; the upper right depends on a2-al but not bl. We 

have yet to learn about the size of b2. To determine this we examine 

those denominators of the vertices A and B which may depend on 

ai. a2, bl or b2. Using our restrictions found so far we note for 

vertex A: 

(ki-li)‘-m2 = S 12~1~1 + (k*-P 1)t - m2, (420) 
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(a,-~ i+kl-k2)2-m2 = si2(A2-A1)(B2-B1-b2) + (P2-P,+k,-k2)t-m2, 

(121) 

and 
2 2 (I,-k2) -m -s 12*2(B2-~2!+(12-k2)~- m2, (122) 

and for vertex B: 

2 2 
(Q,-ki-P3) -m =s 12*3B3 +(Ql-kl-f3)~-m2, (123) 

(14-e3+Q3+k2-kl:2- ’ s1 m = si2(A4-A3)(B4-B3+b2 +-) t 
si2 

+ Cl,- P 3+Q3 + k 2 - kl )“I - m2, (124) 

and 
(14+ k2-Q2)‘-m2 = s 12A4(B4+b2+ s 

s1 
-) + (m4+k2-Q2+n2. 

12 
(125) 

And here we see the appearance of the crucial quantity si/si2. If 

lb21 ” s /s i 12, we may drop s1/si2 in vertex B and our amplitude 

would be independent of si. It must then contribute to the three 

terms of T6 having no discontinuity in s1 and is, thus, of no interest 

to us. We learn then 

2 
si 

m i, lb21 2-g- . 
s12 12 

(126) 

With this we see that the upper vertices do not depend on b2 because 

the b4 and b5 parameters are order one and much greater than 

s Is 1 12’ 

These observations allow us to split the b2 integration into 

two pieces 
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m2/s 12 <, lb21 << 3’52 ’ I (127) 

and 

I b2 I = qsj 2’ such that m2/si2 <, 1 b + 
s1 si 

2 -( << -, II (128) 
s12 s12 

In piece I we may neglect b2 in vertex B. In piece II we change 

variables to b 
2 

=b2+s /s 
1 12 and neglect b2 in vertex A. 

In Region I we then have that the lower vertex contains all the 

bl dependence, the upper left depends on a2 only, the upper right on 

a 
2 1 

-a only, the vertex A contains all the b2 dependence, and B 

depends on none of a I’ a2, bl or b2. The amplitude for Fig. 14b 

splits as 

+f21 
2 

4W8 s 

Q +...+a. 
T6 = d2ki1d2k s ’ 

21 12 % . ..5 
@i @6 

X 
g2’si2’2 

II db2 

dAldBid21 ildA2dB2d2E 2L(-Bi) 
ai a3 

A2 (A1-A2) a5 3 p 

4(2rr )’ DA1.. . DA 
4 

Rzls12/2 
X 

dA3dB3d21 3 ldA4dB4d21 41(-B3JL12A~(A3-A4)~6p3 

4(2rr)’ DB1.. . DB 6 

s 
(y2 a4 dblda3db3d2k3i Cl-a3) a3 p 2 

X 
2(21rj4 DLi., e DL4 

g2b121 
X 

d2k4J~-b,) (y4(y3 2 b4 p 
2(21rJ4 

da2da4db4 
DUL1. . . DUL4 
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g21si21 2 
X 

(R-b5)a6b> p2 

2(21T)4 
d(a2-ai)da5db5d k51 DUR4.. . DUR ’ (129) 

5 

where the various denominators have been labeled DUR for upper right, 

etc. Needless to say, we may markedly simplify (129) by noting that 

various blocks are just N or r 
(Y. a. For example, we see that 

1 J 
the lower and upper left integrals are just --J& N 

Is121 

and 
@ia2 

h/~ NQ3n4 respectively. By scaling b5 we see that the upper right 

vertex is Vertex B is also easy to 

handle since it is exactly the same as we encountered for r before, 

and we note 

. Integral over vertex B 

=-5 5 5 
“4 @6 a2-ff4-LY6r 

“4 “6 @2-@4-@6 
sl2 s 13 si a2, ff4> cd6 * 

($30) 

The integral over vertex A requires a little more doing. Scale 

the variables as b2 = si/si2 b2, B1 = sitsi B1. B2 = s /s 1 12 
B 

2’ so 

the range of b 2 is 

2 

m 5 lb,1 s1 
-=z< 1, (131) 

while the range of integration on Ai and A is 2 

2 
m-c< jAi[,[A2[ <<I . 
s1 

(132) 

Recalling one’s experience 
14 with the triple reggeon vertex of Fig. 15, 

we note 
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5 rui-(a +@ -1) 
s1 

3 5 
i 

1 
xIntegra1 for Vertex A = 

s12 
cul-(a3+ru5 --qI‘.q (y a * 

13 5 
(133) 

Putting together all these simplifications we reach 

T6(Region I of Fig, 14b) = s - 
(2rr)2 (2Tr)2 

555 x 
“4 @6 Q3 

- 1) 

Ly +a -1 Q +a -1 
ai-(~3+cY5 

-1 x5 5 34 56 a2-a4-Q6 ‘1 

a5 @2-(Y4-a6 
s12 si3 s1 &i-(a3tcY5- 1) x 

xN N N r r 
“1@2 a304 (y5(y6 “la3Q5 n2(Y4(Y6 

(434) 

The study of Region II proceeds just as above and results in the same 

integral as (134) with the replacement 
al+ +(Y -1) 

3 5 -1 
a2-(cY4+“6-1) 

-1 
5 

“2-@4-@6 ‘1 

“2-a4-cY6 
si (‘1-(a3+a5 - 1) -5 

al-ru3-cY5 s1 

@I-@3 -a5 
s1 (Y2-(@4+‘y6-I) ’ 

(435) 

Introducing angular momenta 1 1. . . 1 6 for each reggeon we are able to 

evaluate the partial wave amplitudes for Regions I and II 

FI(Ji, ti) = 
s 

d2k,, d2k2id1 l.. . dP 6 

4 6 N N 
y13f4 

N 
(2~) (2*i) plp2 I314 ‘5’6 “5’6 

Gp (a L ..G! (0 ) 
1 1 

re*P3P5rP214P6 1 1 6 6 J2-(P3tf4-1) J3-(p5tp6-1) 

1 1 
J,+ lit 2 - 1) J,-(P3+m2+P5-2) ’ (136) 



-37- FERMILAB-Pub-75/ 29-THY 

and 

FII(Ji> $I 
s 

d2ki1d2k2 IdP l.. . d4 6 
= 

(2n)4(2ri)6 
N N 

4i42 4344 
N 

YP3P4 45’6y4546 

1 
r414345r424446 G41(+~~ G46(@61 J2-(P3+4 

1 

4 - 1) J,-(4 5+~6-i) 

1 1 
Ji-(4 i+P 2-1I Ji-(4 i+P4+4 6-2) ’ (137) 

In the next section we will use these results to derive our reggeon 

graph technique. Here we finish by noting the important presence of 

y4344 
and y 

4546 
which provide zeroes at physical J2 and J3 respectively, 

thus decoupling this graph and its branch points from physical partial 

waves. 

VI. FORMULATION OF THE DIAGRAM RULES 

We are now prepared to translate our results from the analysis 

of the hybrid graphs into rules for the equivalent reggeon diagrams. 

To facilitate this transcription we define the usual reggeon energies4 

E = 1 - angular momentum . (138) 

The relation between T (s 6 12,s13,~i,tiIand F(Ji,ti) becomes 

ctim 

‘12’13 T dEidE2dE3 = 

si 6 I 
5 J -J -J ‘J ‘J 

c-im (27ri j3 1 2 3 2 3 

exp - (E1Ti+E2T2+E3T3) F(Ei,ti), (139) 
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where the “times” conjugate to the energies Ei are 

Ti 
= log s* , (140) 

and 
72 = log Si2/S1 , (141) 

73 = log Si31 s1 I (142) 

and the E. contours run to the left of singularities in F. With this 
1 

notation the partial wave amplitude for region I of Fig. 14b, Eq. (136) 

becomes (Fig. 16) 

F(Region I, Fig. 14b) = 
s 

d2k, Ld2k21.. . d2kbl 2 2 

(4iT2 I6 
(2~) 6 (Q2-k3-k4) 

(2r)262(k2-k4-k6) NNN YY r I‘ 
E1,E3> E5 E2E4E6 

G(ei.kil). . . 

1 1 1 1 
G(c6>kgl) E1-~1-~2 Ei-c3-e5-e2 E2-c3-e4 E3-c5-e6 IU43) 

where 

1 
G(Ei’kjl.’ = ci-(l-a(kjl)) ’ ($44) 

and E. = I-4.. I 1 

This result has its natural interpretation in terms of “old 

fashioned” perturbation theory where momentum is conserved, but 

not energy at each step. The progress of energy is represented 

by the energy denominators in (143) which give the total energy E. 1 

in channels 1,2 or 3 minus the energy of the propagating quasi-particles 
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at each step of the interaction. These steps, which, correspond to 

different time stages, are shown as the dotted intermediate lines in 

Fig. 16. For Region II of the double cross graph one has vertex B 

involving reggeons 2,4 and 6 occuring “before” A and the reggeon 

energy denominators are as we read from Fig. 17 

1 1 1 1 
Ei-ei-e2 Ei-eiLe4-e6 E2-e3-e4 E3-E5-E6 (145) 

which is consistent with Eq. (137). 

How are we to interpret this result? A very attractive formulation 

is to focus our attention on the “time” variables involved. In the triple 

regge graphs we have considered there are four times we have distinguished; 

they are first,the time the lower vertex with energy Ei and two momentum 

zi emits reggeons. This time is no = 0 in our examples. Next is the 

time at which the energy nonconserving interaction takes place 

“1 = log S1’ (146) 

then is the time at which energy E2 and momentum Q, leave the interaction 

)72 =10gsi2 I (147) 

and the time when energy E and momentum Q 
3 3 

leave 

“3 = log si3. (148) 

All energies si, sf2 and si3 are to be given in some convenient units, 

say the common mass of the problem, m2. If we consider energy 

Ei- E2 - E3 to be lost at time ni, then the amplitude in time space 
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depends only on 

s12 si3 
T1 = rJ1-710 = log Si’ T2 =n2-n1 = log -, -r3=q3-rJi = log -. 

si si 
(149) 

Now these times are just the rapidities associated with any given 

vertex or momentum at that vertex. For a vector 

v=ap +bp +v vl v2 1 ’ 

we may define the time 

2; ‘V 
7 

V 
= log +- 

si2 = log bv 2 . 
m m 

049) 

(450) 

In the double cross graph in Region I, the range of the momenta at 

the A vertex is such that the times in A are between 0 and T 1, while 

in the B vertex the times are order -r 1’ These time assignments 

switch when we go over to Region II of the double cross. This suggests 

that we ought to be able to write the double cross graph for Region I 

as an integral over the time of vertex A which ranges only from zero 

to T1. That is, if we define the time, momentum space expression 

of the partial wave amplitude F(Ei. $) by 

F(Ei,Gi) =i, dri [ dT2[ dT2 erFi’T2E2+ 73E3 

H(T~> 72. ~~~ Gi ) , (451) 

then H( ri, $) ought to have a simple expression in terms of propagators 

for the reggeons 
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Ga(Q,7) = e (152) 

and restricted time integrals. For Region I of the double cross graph 

we write (as in Fig. 18) 

H(T+, 72, To) =id2;;;;3 p’dr) Gl(+)G3(~3~n2-“) 
0 

G5(;i-<3, q3-q) G2(?i1-~i> ql) G6(z3+g3-i;l’q3-v1) 

G4(62-c3, q2- q,) N 
e3e4Ye3e4 

N Y N 
e5e6 e5e6 eie2 

r r 
El.E3,E5 E2’E4,E6 . (153) 

Using (152) for G,(G, n) and ni =5 1, n2 = -r2+ -rt, and n3 = -r3+ -rt 

we find (143)for F(Ei,si). 

A general prescription is given in pictures in Fig. 19. One locates 

four times no = 0, nl, n2 and n3 on a time axis. All Reggeon interactions 

before r)i are restricted in time integration to be 5 ni. This will all be 

interactions in channel 1. Some of these interactions will have their 

time integrations automatically restricted by the step function 0 (q ) in 

(152). Others, as in the double cross will have their times restricted 

by hand. All interactions after qi occur only in channel 2 or in channel 

3. After ni there is no interaction between channels 2 and 3. In the case 

of a graph like the double cross graph or its generalizations (Fig. 2,O~) one 

will find two or more three reggeon vertices whose time variable is not 

restricted by 8 functions alone. One must choose these one at a time 
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and note them with the time n 1 = log si. The others have their time 

integration restricted to be 5 ni. This gives directly the two terms 

of the double cross graph and k terms in a graph with k such vertices. 

We can also give energy-momentum space rules for each reggeon 

graph. To do this we first rotate the energy contours by a/Z to the real 

axis. The propagator becomes 

Gad) = 
i 

e-(l-aa($) + i 6 

instead of (144). Introducing the b* functions 

Fl 1 
b*(X)=- - 2rri xii6 ’ 

(1541 

(155) 

a+(x) + a-(x) = 6(x)* (1%) 

we may write the partial wave amplitude for Region I of the double 

cross graph, Eq. (1431, as 

FICE i, Gil = 
d2kl.. . d2k6 

(4rr2 j6 
(2a)262(~2-~-~44j2rr)262(~3-?;5-T;6) 

dw 1 . ..do 
’ 

(2*+ 
G$w~>~~) . . . G6b6,~6)N w1w2 (27) 6 (El- w1 - w2) 

N 
w3w4 

Y 
03w4 

(2~) 6(E2-w3-w4)N 
w5w6 

y 
?O6 

(2rr)6(E3-05-o ) 
6 

I‘ wi, W3’ w5 
(ZI~)~+(O~-W~-W~) r (157) 

w 2 I W4’ W6 

For Region II we make the replacement 
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6+( wi-03-w5) - 6 +(W 2-w4-w6 I. (158) 

When Ei = E2 + E3, that is, over all energy is conserved, the sum of 

regions I and II reproduces exactly the contribution of the double cross 

to the two-to-two amplitude, as it ought. 

In energy-momentum space our reggeon rules are begun by 

stating the criterion for a vertex where energy may not be conserved. 

Basically, it is a vertex whose time integration is not restricted by the 

B (n ) in Green’s functions. We call such a vertex a branching vertex. 

We give two kinds of definitions for these vertices: 

I: a) A possible branching vertex has one line entering from an 

earlier time and two departing to a later time. 

b) Identify all possible branching vertices. 

c) If a possible branching vertex has its time restricted by 

another possible branching vertex, it is not a branching vertex. 

d) The remaining possible branching vertices, are actually 

branching vertices. 

II. a) It has two outgoing reggeon lines. 

b) If we leave the vertex along one outgoing line, we do not 

meet any reggeon lines connected via interactions (none, one, . . . ) to 

the other outgoing line. 

Also: 

a) each line of a graph carries energy E and momentum k’. 
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Associate with each reggeon a propagator 

G6(e,k) =i[e-(l-@a(z))+i6)-i . (159) 

b) At each vertex where three reggeons meet place ths triple 

regge vertex r 
WI’ w ,a 

. If energy is conserved at that vertex, place 
2 3 

a 2rr 6(w 1-o -w ). 2 3 In a graph with k branching vertices select them one 

at a time. The selected vertex does not conserve energy and receives 

a factor unity. At the k-l other branching vertices put a 6’(win- x uout) 

in momentum space or restrict their time integrations by ni = log s 
i’ 

the time of the selected vertex. 

c) Two momentum is conserved at each vertex. 

d) Energy E1 and momentum sl, tl = - 1 <I 1 ‘, enters the 

graph at the bottom (time zero) where two particles create n1 reggeons. 

via a function Nnl(Ei, Q’,; E., cl, . . . E 1 
, l? ). 

“1 nl 
Energy and momentum 

are conserved here. nj reggeons depart via an N n, function carrying 
1 

off Ej and aj; j = 2 and 3. 

e) All reggeon energies and momenta are to be integrated 

d2k de 

t2rrj3 . 
f) At each vertex with n 2 2 reggeons coming from below put 

a factor y 
4,14 

6,...E r the generalization of y . 
n E1.E7 

Finally we complete the diagram rules by telling how the triple 

regge inclusive cross section a + b + c + anything is gotten from our 

F(Ji, Qi) constructed by the instructions just given. The reaction is 
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shown in Fig. 21. In terms of our variables we want the limit 

s12 
=s +i.e, s 

13 
=s - ie,t 1 =O, t2 =t3 =t and the discontinuity in si = M2, 

s2 du(a+b + c + Xl = 
dJ J2+J3 

(M2) 
Ji 

dt dM2 

F(Ji> J2, J3> tl = 0, t2=t. t3 = t). (160) 

VII. REGGEON FIELD THEORY FOR THE TRIPLE REGGE 
AMPLITUDE AND RENORMALIZATION 

The diagram technique we have described finds its most interesting 

application in the study of the triple Pomeron (c 1 vertex and the P 

corrections to that vertex. As is well known the P involves a reggeon 

with a(O) = 1, and, therefore, branch points of multiple p exchange in 

any of the Ji channels pile up at ti = 0. Since it is precisely the behavior 

at t =t =t =O that caused the interest in the triple P vertex, the formalism 
1 2 3 

we have developed here applies . We furthermore can concentrate 

our attention cn all Ji near one and all ti = - 1 Gi 1 ’ near zero. From 

Refs. 4, 9 and 10 we know that to study the most important structure in 

this region we need concentrate only on local triple P couplings since 

quartic and higher and derivative couplings are negligible. Furthermore 

nothing that each y 
PI12 

= -1 in this regime, we are able to associate a 

factor i with each triple P vertex except the energy nonconserving vertex. 

In the case of all graphs conserving energy and momentum the 

counting is straightforward and is given in Ref. 9 and 10. Here we must 



-46- FERMILAB-Pub-751 29-THY 

account for energy nonconservation as well. Our attention is focused 

on the one P to two P proper vertex function F -(~‘2)(E1.E2,E3’~~,~2,33) 

which is the generalization of the energy conserving F (1,2) of Ref. 10. 

Of course, we must have 

F’L 2) = r(c 2) 
(161) 

E1 =E2+E3 

Now ;‘I, 2) is given as an infinite sum over three P proper vertices 

with1,2,... branching vertices 

f.‘l. 2)= 
fi 

kr(f, 2) 

kzl ‘n ) 
(162) 

where IL”) is the one p - two P proper vertex with k branching vertices. 

(1,2) Skeleton expansions can be given for F k . Some terms of these for 

k = 1 and 2 are shown in Fig. 22 and Fig. 23. Note that the basic 

“(i,Z) building blocks of I are the good old energy conserving I (f,2) and 

the vertex ry’ ‘1 with one branching vertex. The appearance of the weight 

factor k in (162) is familiar from the extensive discussion of the double 

cross graph in previous sections. 

Now the renormalization procedure will go through as before 9,io 

with the one change that an additional normalization function will be 

needed for the energy nonconserving coupling. We encounter here an 

amusing complication which does not allow us to proceed in any easy 

manner to the detailed behavior of the triple regge inclusive cross 

section (160) as a function of s,t, and M2. In the renormalization group 
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analyses of Refs. 4, 9 and 10 one is able to give arguments concerning 

the general scaling form of functions such as F(Ei, zi) . Such scaling 

laws in themselves are not enough here, interesting as they may be. 

We need much more knowledge of the precise behavior of the scaling 

functions on their scaled arguments before we can extract the information 

we desire. The techniques for doing precisely this are derived in the 

accompanying paper. We end this long exposition with both contenting 

ourselves at having achieved our diagram technique and encouraging the 

hearty reader to proceed to the next chapter. 

VIII. CONCLUSION AND SUMMARY 

In this paper we have derived a set of rules for the evaluation of 

regge pole and branch cut contributions to the six point scattering 

amplitude in the triple regge region. Referring to the kinematics in 

Fig. 1 we showed that in the triple regga limit 

s12 
- , ti fixed , 
s13 

the six point amplitude may be represented as 
ciim 

‘I’ (s 6 12’Si3’si’ti) = 
i 

dJidJ2dJ3 J2 J3 Jt-J2-J3 

‘12 ‘13 ‘1 
c- im (2=ij3 

(163) 

(164) 

‘J5J5J -J -J 
2 3 1 2 3 

F(Ji, J2, J3,ti ) , (165) 
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where 
-irrJ. 

e l+r. 
5 

1 
J. = (466) 

1 sinaJ. ’ J. 

and -iT(J1-J2-J3) 
e 

5 = 
+ ‘1r2T3 

Ji-J2-J3 sinrr(J1-J2-J3) (167) 

and 7. = 51 is the signature of a reggeon in the Ji channel. 
1 

There are 

other contributions to T 
6 

but they do not have a disccntinuity in s i, the 

missing mass, and do not contribute to the inclusive cross section 

S2 do’(pi+p2T;+ Xl 

dt dM2 
= Y& disc s 

1 
=M~ T6(~i2=~ti~, si3 = s-i E, 

si = M2, ti = 0, t2 =t3 =t). (468) 

With the phase factors 5 removed, the partial wave amplitude is real 

analytic. Our rules tell how to evaluate it. 

The function F(Ji. ti) is very much like a three reggeon Green’s 

function in conventional Reggeon field theory 4,9,10 except that Reggeon 

energy Ei = l-Ji is not conserved. This is due to the fact that we have 

singled out a special “time” (rapidity) n1 = log si in the progression of 

reggeons from their emission at time TJ 0 = 0 where they emerge from a 

two particle source with net reggeon energy E1 and net two momentum 

Q, (t, = - I$ 1’) to their absorption at time n2 = log st2 or n3 = log si3. 

If we integrate over this time ni setting n2 = n 3, we recover energy 

conservation and the appropriate form for reggeon graph contributions to 

the 2 - 2 amplitude with net rapidity Y = log s 
12’ 
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We have given detailed formulations for the evaluation of F(Ei,Gi) 

in energy-momentum space and for its time-momentum space analog 

H( q i, si ). Either is convenient for the renormalization group evaluation 

of the energy nonconserving v?rtices involved. Because a particular 

intermediate time has been prescribed, the counting of graphical 

contributions to the reggeon vertex functions is slightly more involved 

than in the conventional field theory. This is described in Sec. VII. 

The renormalization group will give scaling forms for the partial 

wave amplitude F(Ei. Gi) in the Ei = 0, Qi = 0 limit appropriate, say, 

for multi-Pomeron contributions to inclusive processes. In order to 

extract from the triple Sommerfeld-Watson representation (165) the 

detailed behavior of inclusive cross sections in s, t, and ML, it is 

necessary to know rather much about the scaling functions themselves. 

This is done in the accompanying paper for reasons of clarity in presentation. 
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FIGURE CAPTIONS 

Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Kinematics of the six-point amplitude in the triple 

Regge region. 

The inclusive reaction with variables s, t and M2, 

We are interested in this cross section when s, M2, 

and s/M2 + (0, t fixed. 

The kinematic channels of the partial wave amplitude 

for the six-point function. Each channel has angular 

momentum Ji, two momentum ci such that 1 Gi I2 = -t i, 

and signature 7i = i1. 

The double regge region of the 2 - 3 amplitude. 

The hybrid field theory graph for the simplest contribution 

to To in the triple regge region. Each of the 2-2 

subamplitudes becomes a reggeon when its subenergy 

is large, This is the transition from 5a to 5b. 

The complex Bi plane needed in the evaluation of the 

graph in Fig. 5. 

The triple regge contribution to Telastic. When s1 is 

integrated over in Fig. 5, energy is conserved and 

the vertex r in Fig. 5 becomes the usual triple regge 

vertex of Ref. 4 or 14. 
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Fig. 8 

Fig. 9 

Fig. 10 

Fig. 11 

Fig. 12 

Fig. 13 

Fig. 14 

The allowed simultaneous energy discontinuities of T6. 

The dotted lines denote the subenergies in which the 

amplitude has nonvanishing discontinuities. Intersecting 

lines correspond to cuts in overlapping channels. Only 

Fig. 8a has a discontinuity in si and contributes to the 

inclusive process of Fig. 2. 

The two reggeon-two particle amplitude. 

A hybrid field theory graph (10a) and its reggeon limit 

(10b) which contains J-plane branch points. 

The reggeon graph corresponding to Fig. 10. Energy 

is not conserved at the vertex r. 

A reggeon graph with only single reggeon connections 

to the external particles. It is otherwise like Fig. ii. 

Energy is not conserved only at the vertex labeled with 

an r. 

Other reggeon graphs. Energy is not conserved only 

at the vertex labeled with an r. These and the graphs 

of Fig. 12, Fig. 11 and Fig. 5 have only one branching 

vertex (see text ). 

a) The reggeon graph involving the double cross. This 

graph contains two branching verti.ces A and B. At 

either one may have energy nonconservation. 

b) The hybrid field theory graph used to study the structure 

of the double cross graph. 
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Fig. 15 

Fig. 16 

Fig. 17 

Fig. 18 

Fig. 19 

The hybrid graph contribution to the elastic amplitude 

where the two particle-two reggeon function N and the 

energy conserving triple reggeon vertex appears. 

The time ordering appropriate to the old fashioned 

perturbation theory interpretation of the partial wave 

amplitude of Fig. 14; Region I. The time (rapidity) runs 

upward. The time in vertex B is later than in vertex A. 

Each of the dotted lines corresponds to an energy 

denominator. In this figure we read off the energy 

denominators to be 

C (Et-el-E2)(E(-e3-e5-E2)(E2-e3-e4)(E3- S-E6) -* . 1 
The same as Fig. 16 except for Region II of the integration 

for the hybrid graph of Fig. 14. The time of A is now 

later than that of vertex B. 

The time-momentum space reggeon graph for the 

double cross hybrid diagram. The times are no = 0, 

‘II 
= log s+, “2 = log si2, and n3 = log si3. The 

intermediate time n is integrated over 0 5 n 5 n1 . 

The time space classification of all allowed reggeon 

graphs. After n1 there is no interaction between 

the reggeons going up to “2 and those progressing 

toward “5. The time ni always occurs at a branching,vertex. 
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Fig. 20 

Fig. 21 

Fig. 22 

Fig. 23 

A reggeon graph with three branching vertices. This 

graph gives three contributions to F(E i, ciL Each 

of the .branching vertices is in turn noted. Energy 

nonconservation occurs there. The noted branching vertex wil 

carry time nI; the time integrations in the other 

branching vertices will run up to nf. In energy space 

the noted branching vertex receives a factor 1; the other 

+ 
branching vertices receive a b function. 

The inclusive cross section pi + p2 ‘pi + X. It is 

related to our six point amplitude by Eq. (160). 

The skeleton expansion for the proper three reggeon 

(1; 2) 
amplitude with one branching vertex, ri . It involves 

$l, 2) 
1 

Itself and the energy conserving proper three 

reggeon vertex IC (1,2) used in Ref. 10. All propagators 

are full. 

The skeleton expansion for the proper three reggeon 

(1,2) 
amplitude with two branching vertices, r 2 . It involves 

$l, 2) 
i 

and I(” ‘1. All propagators are full. 
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